Similarity learning for wells based on logging data

نویسندگان

چکیده

One of the crucial steps geological object exploration is interwell correlation. The correlation matches similar parts different wells helping to construct models and assess hydrocarbon reserves. Today, a detailed relies on manual analysis well-logging data: process prone significant time consumption subjectivity. Alternative automation attempts include rule-based, classic machine learning, more recent deep learning methods. However, most approaches are still limited usage inherit cons We propose method based model solve profile similarity estimation. Our takes data as input, constructs well representations uses them provide wells. developed algorithm enables extracting patterns essential characteristics profiles within follow an unsupervised paradigm that allows us utilize large pools logging available in industry does not rely subjective labelling. For testing, we used two open datasets originating New Zealand Norway. data-based has decent quality. example, accuracy our 0.926 compared 0.787 for widespread gradient boosting baseline. selected representation approach also provides high extrapolation capabilities work formations other than those during training start amounts data, experiments show.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes

The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...

متن کامل

Similarity-based Learning via Data Driven Embeddings

We consider the problem of classification using similarity/distance functions over data. Specifically, we propose a framework for defining the goodness of a (dis)similarity function with respect to a given learning task and propose algorithms that have guaranteed generalization properties when working with such good functions. Our framework unifies and generalizes the frameworks proposed by [1]...

متن کامل

Similarity-based learning on structures

The seminar centered around di erent aspects of similarity-based clustering with the special focus on structures. This included theoretical foundations, new algorithms, innovative applications, and future challenges for the eld. For nding the structure in the data set's smothers many tools are related like sisters and brothers. We conclude in the sequel: All methods are equal! (But some are mor...

متن کامل

Classification based on 3-similarity

Similarity concept, finding the resemblance or classifying some groups of objects and study their common properties has been the interest of many researchers. Basically, in the studies the similarity between two objects or phenomena, 2-similarity in our words, has been discussed. In this paper, we consider the case when the resemblance or similarity among three objects or phenomena of a set, 3-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Petroleum Science and Engineering

سال: 2022

ISSN: ['0920-4105', '1873-4715']

DOI: https://doi.org/10.1016/j.petrol.2022.110690